KULEUVEN ONTN

- environment.

- collaboration scenarios.
- world data.

Low-Cost Scene Modeling using a Density Function Improves Segmentation Performance

Vivek Sharma¹, Sule Yildirim-Yayilgan², Luc Van Gool^{1,3} ¹ ESAT-PSI, KU Leuven ² Norwegian University of Science and Technology ³CVL, ETH Zürich

Density Function

Synthetic dataset generation using a density function

- The density function Φ capturing the context of human-object (*H-O*) and object-object (*O-O*) relationships in a scene S is defined as: $\Phi(S) = \Psi(H, O; \Theta)\Psi(O, O; \Theta)$, where Θ is threshold of preferred occlusion of boundaries.
- We chose 4 industrial objects (i.e. chair, plant, table, and storage) based on an industrial environment, and 6 localized human body-parts of the human as object classes (i.e. head, body, upper-arm, lowerarm, hand and legs).

• The density function describing the human-object and object-object relationships is defined as: $\Psi(H,O;\Theta) = \psi(H_{height})\psi(H_{pose})\psi(H_{position})\psi(H_{orientation})\psi(O_{height})\psi(O_{position})$ $\psi(O_{orientation})\psi((H,O)_{\Theta})\psi((H,O)_{relationship})$

 $\Psi(O,O;\Theta) = \psi(O_{height})\psi(O_{position})\psi(O_{orientation})\psi((0,0)_{\Theta})\psi((0,0)_{relationship})$

Synthetic Training Dataset: (*Top*) Ground truth labels of synthetic depth data (*Bottom*) generated using a density function with a synthetic KINECT sensor.

	•	4
EXT	er1m	lents

											
F1-measure	Avg	Head	Body	UArm	LArm	Hand	Legs	Chair	Plant	Storage	Table
$CRF_{Non-Modeled}$ [1,2]	0.76	0.90	0.71	0.73	0.65	0.69	0.48	0.85	0.78	0.90	0.91
$CRF_{Modeled}$	0.84	0.96	0.84	0.79	0.70	0.79	0.52	0.93	0.90	0.98	0.97

Comparison of the modeled and non-modeled training dataset, using mAR and mAP as a function of number of training synthetic depth frames (F).

ETH Zürich

(*Row* 1:) Prediction results for real-world test depth data using the modeled and nonmodeled training dataset. The segmentation improvements can be seen in the modeled case: the misclassification around the border of the human has diminished significantly; the human hand placed on the table and the chair are classified well with reduced mislabeling. (*Row 2-3:*) shows the predictions obtained from the RDF classifier and the CRF modeling.