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Abstract
Image enhancement using visible (RGB) and near-infrared

(NIR) image data has been shown to enhance useful details of
the image. While the enhanced images are commonly evaluated
by observers perception, in the present work, we rather eval-
uate it by quantitative feature evaluation. The proposed algo-
rithm presents a new method to enhance the visible images us-
ing NIR information via edge-preserving filters, and also investi-
gates which method performs best from an image features stand-
point. In this work, we combine two edge-preserving filters: bi-
lateral filter (BF) and weighted least squares optimization frame-
work (WLS). To fuse the RGB and NIR images, we obtain the
base and detail images for both filters. The NIR-detail images
for both filters are simply fused by taking an average/maximum
of both, which is then combined with the RGB-base image from
the WLS filter to reconstruct the final enhanced RGB-NIR image.
We then show that our proposed enhancement method produces
more stable features than the existing state-of-the-art methods on
RGB-NIR Scene Dataset. For feature matching, we use the SIFT
features. As a use case, the proposed fusion method is tested on
two challenging biometric verifications tasks using CMU hyper-
spectral face and CASIA multispectral palmprint databases. Our
exhaustive experiments show that the proposed fusion method per-
forms equally well in comparison to the existing biometric fusion
methods
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INTRODUCTION
Image enhancement or filtering using visible (RGB) and near-

infrared (NIR) images has been used for several applications, such
as aerial or landscape photography [6], dehazing [1], tone map-
ping [2], biometrics [3, 13, 14], image segmentation [33], material
classification [34] and more. Visible images enhancement using
the near-infrared part of the electromagnetic spectrum enhances
the contrast, details, and produces more vivid colors. Traditional
approaches to enhancement have been tuned on the perception of
quality from the perspective of human vision. However, with the
advent of growing applications in image processing and computer
vision, it is important to characterize the effect of the filtering
techniques on the machine vision system. As a consequence, it
is important to understand the effects that these filters have to the
image quality that can affect the image structures, and thus can
cause performance reduction in computer vision applications.

Over the last two decades, several image enhancement ap-
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Figure 1: Example of scene enhancement by fusing a visible
(RGB) and near infrared (NIR) image. Note that the enhanced
image for the proposed method BFWLS-Avg (Ours) has enhanced
image structures and details when compared to the visible image.
Best viewed in color.

proaches have been proposed. For combining NIR information
with RGB images, the NIR channel is combined as either color,
luminance or frequency counterpart. This combination is achieved
using linear (Laplacian pyramid) or non-linear (anisotropic diffu-
sion, robust smoothing, weighted least squares, and bilateral fil-
tering) filters. Each of the filtering technique comes at some ex-
pense, such as high computational time, more artifacts, high noise
level, inability to preserve edges and shape details, and more. All
these shortcomings add up to undesired loss of image features,
however visually these images may appear very pleasant.

Motivated by the above observation, we propose to combine
these filters in a meaningful way, such that a minimum loss of vi-
sual pleasantness or information content is attained. In this work,



we combine two edge-preserving filters: bilateral filter (BF) [4, 5]
and weighted least squares optimization framework (WLS) [2]
and show that the combination is much more interesting from
image features standpoint. We propose to combine the base and
detail layers (i.e. low and high frequency decompositions) for a
pair of visible and NIR images with the BF and WLS filters. As
we combine BF and WLS filters, the combination is denoted as
BFWLS. We show the performance of method in Figure 1.

We evaluate the quality of BFWLS image features, and com-
pare this with other fusion methods on RGB-NIR Scene Dataset
[8]. In addition, we demonstrate the performance of the proposed
fusion approach for face and palmprint verification tasks using
CMU hyperspectral face [12] and CASIA multispectral palmprint
[13] databases. Results show that the BFWLS based robust image
are reliable for biometric verification tasks.

The rest of the paper is organized as follows. First, we dis-
cuss the related work, and then we describe our proposed method.
Following this, experimental results and analysis are given, and
finally, the conclusions are drawn.

BACKGROUND
Edge-preserving filtering is a technique to smooth an im-

age, while preserving edges i.e. reducing the edge blurring ef-
fects across the edge like halos, phantom, and etc. The class
of edge-preserving smoothing filters includes: Anisotropic Dif-
fusion [20], Laplacian pyramid decomposition [21], the Weighted
Least Squares framework [2], Bilateral Filter [4], the Edge Avoid-
ing Wavelets [22], Geodesic editing [23], Guided filtering [24] ,
and the Domain Transform framework [25]. These filters are very
useful in reducing the noise in an image making it very demand-
ing in computer vision and computational photography applica-
tions, such as for, automatic skin enhancement [17]; image de-
convolution [29]; multiple illuminant and shadow detection [26];
realistic skin smoothing [7]; flash/no-flash denoising [27]; image
upsampling [28]; transfer illumination from reference image to
target image [30]; multi-modal medical image fusion from MRI-
CT, MRI-PRT and MRI-SPECT [32]; image restoration [36] and
so on. The literature on edge-preserving filtering is vast, as we ex-
ploit BF, and WLS in this work, and summarize these techniques
only.

The bilateral filter (BF) [4] is a non-linear edge-preserving
filter. The intensity value at each pixel in an image is a weighted
mean of its neighboring pixels. Formally, we have:

gFiltered
p =

1
Wp

∑
q∈S

Gσs(||p−q||)Gσr (||gp−gq||)gq

Wp = ∑
q

Gσs(||p−q||)Gσr (||gp−gq||)
(1)

where g and gFiltered are the original input image and filtered im-
age, respectively; p and q indicate spatial locations of pixels. Gσs

and Gσr are kernel functions can based on Gaussian distribution,
where σs is the spatial kernel that controls the spatial weights and
σr is the range kernel that controls the sensitivity of edges thus
avoiding halo artifacts.

The weighted least squares optimization framework (WLS) [2]
is a non-linear, edge-preserving smoothing approach to capture
details at a variety of scales via multi-scale edge-preserving de-
compositions. The approach finds an approximate image gFiltered

that is as close as possible to the input image g, and, at the same
time, is as smooth as possible along significant gradients in g.
Formally, we have:

gFiltered = Fλ (g) = (I +Lg)
−1g (2)

where Lg = DT
x AxDx +DT

y AyDy with Dx and Dy are discrete dif-
ferentiation operators. Ax and Ay contain the smoothness weights,
the smoothness requirement is enforced in a spatially varying man-
ner which depend on g. λ is the balance factor between the data
term and the smoothness term. λ controls the level of smooth-
ing, increasing the value of λ results in progressively smoother
images.

The BF could make the filtered result preserve well the struc-
ture of the information content in the image, but may lose much
shading distribution. WLS filter could make the filtered result pre-
serve shading distribution of reference information well but may
lose the edge structure of the information content in the image. In
this way, the BF and WLS filters compliment each other.
Image Fusion: In this section, we review the previous work on
image fusion using visible and near-infrared images, where they
make use of BF and WLS filters to combine the luminance NIR
image to counterpart the visible image for enhancing the visible
images [6]. We divide the related literature into two categories
that use: (i) bilateral filter, and (ii) weighted least squares filter.

− Bilateral filter: Fredembach et al. (Fre-BF) [7] make use
of the BF proposed by Tomasi et al. [4] to decompose the RGB-
NIR images into base (low frequency component) and detail (high
frequency component) layers, and then swapped the detail layer
of NIR with the ones of the RGB image for realistic skin smooth-
ing. Similar to [7], instead of BF we employed WLS to in the
same setup in order to check the performance of WLS method,
we call this method Viv-WLS. Bennett et al. [31] enhanced un-
derexposed visible video footage by fusing it with simultaneously
captured NIR video footage for noise removal by introducing the
dual bilateral filter.

Some other notable work where they use the same idea of
image fusion, but exploiting the RGB channels only are like “Fast
Bilateral Filtering” by Durand et al. [5] where they reduce the
contrast of the high-dynamic range images to display it on low-
dynamic range media using BF. A major shortcoming of the semi-
nal bilateral filter [4] decomposition is its speed, thus all the above
mentioned papers use the fast bilateral filter [5] with no significant
decrease in image quality.

−Weighted least squares filter: Schaul et al. (Sch-WLS) [1]
improve the contrast of the haze-degraded color images by trans-
forming the visible and NIR images into their multi-resolution
decomposition using WLS filter. The authors fused the detail im-
age of RGB and NIR pairs at each level of their multi-resolution
decomposition. In comparison, in our method, we use the detail
images of BF and WLS for fusion. Zhuo et al. [35] use a NIR im-
age to enhance its corresponding noisy visible image using dual
WLS smoothing filter.

Finally, it is worth noting here the seminal work by Farb-
man et al. [2] who proposed the “Weighted Least Squares Fil-
ter” where the authors combine detail layer of RGB channels at
various scales using WLS multi-scale image decompositions for
tone mapping and detail enhancement. We swapped the lumi-
nance channel of RGB image by the luminance channel of NIR
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Figure 2: Overview of the full pipeline of our approach, BFWLS-Avg: For an input pair of images (IRGB, INIR), the intermediate base
(b) and detail (d) layers are obtained for both images using BF and WLS filters. In the Step 1-2 the new fused luminance images Y d is
obtained by simply taking mean of NIR: Y d

BF and Y d
WLS images, and which is then combined base layer Y b

WLS of RGB image resulting
to enhanced luminance RGB-NIR image Y . And it is then combined with the chrominance of RGB image (Step 3), to construct the
enhanced RGB-NIR new image.

image in the same setup in order to check the performance of [2]
for RGB-NIR image fusion. We denote this method by Far-WLS.

To the best of our knowledge, our work is the first to combine
the BF and WLS filters. We compare against various of these
image fusion approaches in our experimental section.

PROPOSED ENHANCEMENT APPROACH
Fig. 2 illustrates the entire procedure of our proposed ap-

proach. We denote the combined BF and WLS filtering as BFWLS.
To fuse the visible and NIR images, we first transform the RGB
colour space into a luminance-chrominance colour space, where
the one channel NIR image contains intensity data or luminance
only [6]. The chrominance is not used in the fusion algorithm, but
simply re-combined in the final fused image.

Given an input image, the BF and WLS filters decompose an
image into base and detail images. The detail images are obtained
by simply subtracting the base image from the original image.
The base image comprises low frequency content with general
appearance of the image over smooth areas, while the detail layer
comprises of high frequency contents with edges and sharp tran-
sition (e.g. noise).

In the first step (Step 1), we apply BF-based and WLS-based
decomposition of the NIR image for extraction of base and detail
images. We retain, for each pixel the average values of the detail-
WLS and detail-BF images. This fusion criteria is denoted as
BFWLS-Avg.

The fusion criteria is based on the following observations:
the BF filter preserves edges and can extract details at a fine spa-
tial scale, but lacks the ability to extract details at arbitrary scales.
Where as, WLS filter is very good at preserving fine and coarse
details at arbitrary scales. Taking an average between two, - al-
lows to retain the details from both, - moderately boosts the de-
tails, and - we also found that the hidden details appeared in this
way.

As a fusion criterion, we also tried to retain the maximum

values between the two, - allows to preserve well the structure of
the important information content from both, but may lose much
shading distribution. We denote this fusion criteria as BFWLS-
Max.

The base layer of RGB image contains low luminance in-
formation as perceived by humans visual system, thus the NIR
base layer is discarded. In the second step (Step 2), we combine
the fused detail layer of NIR image with the base layer of RGB
image obtained using WLS, to obtain the new luminance image.
This new luminance image enhances the original image’s contrast
and details, and it is then combined with chrominance of RGB
image to reconstruct the final image in the third step (Step 3).

EXPERIMENTAL RESULTS & ANALYSIS
We perform two sets of experiments: Firstly, we evaluate the

image feature quality of BFWLS in comparison to other fusion
methods via feature matching. Secondly, we test BFWLS on two
challenging biometric face and palmprint verification tasks and
compare it with other baseline biometric fusion methods. For the
experimental evaluation, we used a desktop with Intel i7-2600K
CPU at 3.40GHZ, 8GB RAM. All experiments were performed
using the publicly available vlfeat library [9].

Evaluating the Quality of BFWLS
We evaluate our proposed method on 477 pairs of images

from RGB-NIR Scene Dataset [8]. We evaluate the features qual-
ity by analysing the amount of original features that remain af-
ter applying the transformation to an image. A more detailed
evaluation to quantitatively assess the quality of features in terms
of robustness and discriminability can be found in [18, 19]. To
this end, we repeat the procedure of feature assessment suggested
in [18], we apply synthetic transformations: rotation (45◦, 90◦

and 180◦), and scaling (0.5, 0.75) to each image. Finally the fea-
ture matching is done between the original and transformed image
pairs, where threshold = 1.5, producing a number of matches. We



compare the matches obtained from the fusion algorithm against
the matches extracted from RGB images, and report the relative
change (in %) as an evaluation criterion. For removing the out-
liers, we apply RANSAC [16] with homography. By discarding
the outliers, we focus on the features that are more likely to pro-
vide true matches in feature matching, and obtain a reduced set of
candidate correspondences with a fewer accurate inliers. For fea-
ture matching, we use the SIFT implementation from the Vlfeat
library [9]. For the SIFT descriptors, we use a bin-size of 8 and
step-size of 4.

In order to evaluate the performance of our proposed method,
we compare it with other fusion methods. As the codes for the
fusion methods [1, 7] were not available by the authors, we im-
plemented all these techniques using fast BF filter from Durand
et al. [5] and WLS filter from Farbman et al. [2] for image fusion.
For a fair comparison, we compare all the methods under the same
evaluation protocol discussed above. For the evaluation, we use
the same parameters of BF and WLS filters for image fusion, in
order to have a fair comparison of BFWLS with other methods.
The default parameters for all the methods are shown in Table 1.
For comprehensive discussion, we refer the readers to [2, 5]. The
source code for fast BF [5], WLS [2] are publicly available.
Table 1: Parameters of BF and WLS filters for RGB-NIR image
fusion. For fast BF [5], the parameters edgemin, edgemax, σs and
σr of the method are adapted to each image, thus requires no pa-
rameter setting. n is the total number of levels for decomposition.

Method Parameters
Fre-BF [7] fast BP [5]: parameters adapted for each image.
Sch-WLS [1] λ = 0.1, c = 2, and n = 6
Far-WLS [2] λ1 = 0.125, λ2 = 0.50, c = 1.2, and n = 1
BFWLS fast BF [5]: parameters adapted for each image,

and WLS: λ = 0.125, c = 1.2, and n = 1
Viv-WLS λ = 0.125, c = 1.2, and n = 1
DWT [3] haar mother wavelet, and n = 9
CVT [13] #levels in the wavelet pyramid: 4

#scales in the local ridgelets: {3,4,4,5}

In addition, as an evaluation criterion, for each method, we
also report the mean squared error (MSE), peak signal-to-noise
ratio (PSNR), and time to fuse a RGB-NIR image pair for each
method. The PSNR and MSE are computed between the fused
and the original RGB image. The metrics shown in the Table 2
are mean value computed across the 477 image pairs.

We can see in Table 2 that our method has more stable feature
matches over state-of-the-art methods. BFWLS-Avg performs the
best among all methods. BFWLS-Avg obtains an improved fea-
tures matches over RGB images by 8.78% (Rel. Change: SIFT)
and 6.27% (Rel. Change: SIFT+RANSAC) respectively. The per-
formance gap of BFWLS-Avg is 5.49/5.45% better, when com-
pared to BFWLS-Max using Rel. Change: SIFT/SIFT+RANSAC
criterion. BFWLS-Avg is 4.6%, 9.67%, and 3.75% better than the
Fre-BF. [7], Sch-WLS [1] and Far-WLS [2] using Rel. Change:
SIFT+RANSAC criterion. Also, BFWLS-Avg is 4.6%, and 4.83%
better than the Fre-BF. [7] and Viv-WLS using Rel. Change:
SIFT+RANSAC criterion, which clearly shows that simply not
averaging the details layers i.e. using either the BF (Fre-BF) or
WLS (Viv-WLS) detail layer alone gave worse results than with
the fusing of the two methods. Note that Sch-WLS [1] feature
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Figure 3: Example of a flower image taken from Farbman et
al. [2]. Note the higher contrast and sharpness in the WLS fil-
tered image leads to feature matching with high-confidence, in
comparison to that of the RGB image. Best viewed in color.

matches degrade by 1.11/3.49% against RGB images after the
image fusion. Our enhanced images has better high-frequency
details, and further improve the ability to preserve edges because
our approach can extract details at fine spatial and arbitrary scales
due of combined fusion from BF and WLS filters, shown in Fig. 4.
As an additional example, in Fig. 3 we illustrate the impact of fea-
ture matching using enhanced image versus non-enhanced image.
The source code for all the fusion methods will be made publicly
available.

Application to Biometric Verification Tasks
We test our proposed fusion approach for face and palmprint

verification tasks using CMU hyperspectral face [12] and CASIA
multispectral palmprint [13] databases in biometric settings. In
order to evaluate the performance of our proposed method, we
compare it with traditional biometric fusion methods, and other
baseline methods. For this evaluation, we generate an RGB image
and panchromatic-NIR image for both datasets using standard im-
age conversion of hyperspectral (HSI) to RGB and panchromatic-
NIR images1. In this regard, we refer the reader to the book by
Ohta and Robertson [10] for detailed steps.

As an evaluation criterion, in addition to True Positive Rate
(TPR or Recall), we report the PSNR, MSE and processing fu-
sion time for each fusion method. We now explain the experi-
mental details: dataset, implementation details, reference/testing
protocol, and baselines.

Experimental details
Datasets The CMU-HSFD face and CASIA palmprint datasets
are publicly available datasets used in our experiments. Detailed
specification of both databases are given in Table 3.

Carnegie Mellon University Hyperspectral Face Dataset (CMU-
HSFD) [12] (see Table 3) is acquired using the CMU developed
AOTF with three halogen light sources. Each hyperspectral cube
contains 65 bands (450-1090nm, with step size of 10nm). The

1For transforming the HSI to RGB color space, we use (a) CIE 2006
tristimulus color matching functions, (b) CIE standard daylight illuminant
(D65), (c) Silicon sensitivity of Hamamatsu camera, (d) RGB-NIR filters
for modulating wavelengths in 400-1000nm.



Table 2: Comparison of BFWLS with the other methods. The metrics shown are mean value computed across the 477 image pairs. The
images are of resolution 1024×680 pixels.

Metric Fre-BF [7] Sch-WLS [1] Far-WLS [2] BFWLS-Max BFWLS-Avg Viv-WLS
(Mean) (ours) (ours) ours
Rel. Change: SIFT (%) 4.31 -1.11 4.92 3.29 8.78 3.83
Rel. Change: SIFT+Ransac (%) 1.67 -3.49 2.52 0.82 6.27 1.44
Time (Sec) 0.20 38.20 6.65 6.39 6.59 6.54
PSNR 32.36 22.83 13.28 30.28 32.69 33.45
MSE (10−4) 6.76 61 637 10 6.45 6.42
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Figure 4: Visual comparison of BFWLS against state-of-the-art algorithms for RGB-NIR image fusion. In the zoomed-in view, note how
BFWLS-Avg adapts well to the local structures and details when compared to the other methods. Best viewed in color.

database contains data of 54 subjects acquired in 1-5 different
sessions over a period of about two months. For each individ-

ual, frontal, left and right views with neutral-expression were ac-
quired. The database contains 4-20 cubes-per-subject over all ses-



Table 3: Details of the train/test set for CMU-HSFD and CASIA..

CMU-HSFD [12] CASIA [13]
Number of Subjects 29 32
Images/Subject 12-20 12
Training Images/Subject 8 6
Testing Images/Subject 4-12 6
Resolution (cropped) 132×132 172×172
Genuine Pairs 828 576
Impostor Pairs 11600 5760

sions. We use 29 (i.e. M = 29) subjects in our experiments, for
whom we have atleast 3 sessions, and 12-20 cubes. The dataset
suffers from shot noise. We apply a median filter of size 3×3 to
remove the shot noise. We transform the hyperspectral cubes into
an RGB and panchromatic-NIR image representations [10].

CASIA Multi-Spectral Palmprint Image Database V1.0 (CA-
SIA) [13] (see Table 3) is acquired using 5 narrow band illumina-
tor ({460,630,700,850,940}nm) and a white light. The database
contains data of 100 subjects acquired in two sessions with the
time interval of over one month. In each session, there samples
were captured. Each sample contains six palm images for the 6
illuminators respectively captured at the same time, leading to a
total of 7,200 palmprint images for 100 different subject over all
sessions. The ROIs were extracted according to the technique
proposed in [15]. Only 32 subjects palmprint were detected accu-
rately using the extraction technique [15]. Therefore, in our ex-
periments only 32 (i.e. M = 32) subjects were considered for the
experimental evaluation. We use {460,630,700}nm as an RGB
image and {850,940}nm were transformed into panchromatic-
NIR image (by taking a simple mean of two images), while the
image acquired with a white light is discarded.

Protocols For face verification using CMU-HSFD, the refer-
ence samples of each subject are taken from the first session,
while test samples are taken from all other sessions. For palm-
print verification using CASIA, the reference samples are taken
from the first session, while the test samples are taken from the
second session.

Implementation details To extract the SIFT features, we use
a bin size of 4, step size of 8, then the extracted SIFT-features
are Fisher encoded. To compute Fisher encoding, we build a vi-
sual dictionary using GMM with 100 clusters for CMU-HSFD
and also 100 clusters for CASIA. We normalize the features us-
ing `2-norm. We denote dense SIFT Fisher vectors by DSIFT-
FVs. These parameters are fixed for all descriptors. For all fusion
methods, we keep these parameters fixed.

Verification System The verification system is evaluated by com-
puting similarity of the features for genuine and impostor pairs
via Euclidean/L2 distance. The Euclidean/L2 distance is given
by ||y− ŷ||2, where y and ŷ are the DSIFT-FVs features for gen-
uine/impostor pairs. The performance of the system is measured
by calculating the Equal Error Rate (ERR), which is defined as
a point when the rate of impostor pairs accepted (FAR) is equal
to the rate of genuine pairs rejected (FRR). The lower the EER,
the better is the biometric system. We report the true positive rate

(TPR or Recall in %) at the EER. The approach is denoted as
DSIFT-FVs + Euclidean Distance.

To compute DSIFT+FVs, we need to build a visual dictio-
nary using GMM with a given pre-defined number of clusters.
The performance of the system is influenced by the number of
clusters, increasing the number of clusters lead to better perfor-
mance. Optimizing the number of clusters and thus improving
the performance is not the goal of this paper. Thus, for a better
assessment to evaluate the feature quality we present another tech-
nique. Given that we have a pair of images I and I

′
, we extract

a dense set of SIFT features: y ∈ RD×K and ŷ ∈ RD×K , where
D denotes feature dimensions and K is the number of features
extracted. Then we compute the cosine similarity between the
descriptors given as: scorek =

<yk ,ŷk>
||yk || ||ŷk || , k ∈ [1, . . . ,K]. The final

similarity score is computed by taking mean of all scores given
as: Similarity(I, I

′
) = 1

K ∑
K
k=1 scorek. The approach is denoted as

DSIFT + Cosine Similarity.

Baseline fusion methods We compare BFWLS with a few base-
lines: the traditional fusion approaches from biometrics and im-
age processing community, Raghu-DWT (Raghavendra et al. [3]),
Hao-CVT (Hao et al. [13]), Fre-BF (Fredembach et al. [7]), Sch-
WLS (Schaul et al. [1]), and Viv-WLS. In Raghu-DWT [3], the
images are first multi-scale decomposed in n levels, then at each
nth level weighted fusion rule is applied to combine the decom-
posed wavelet coefficients. And finally, the fused image is con-
structed by inverse DWT. Similar is the case with Hao-CVT [13],
where the authors multi-scale decompose the RGB-NIR image
pairs, and fuse them at each nth level of wavelet pyramid. For a
fair comparison, we use an average weighting as a fusion rule for
both Raghu-DWT and Hao-CVT to combine the RGB and NIR
pair images. As the codes for the fusion methods [1, 3, 7, 13] were
not available by the authors, we implemented all these techniques
using fast BF filter from Durand et al. [5], WLS filter from Farb-
man et al. [2], Curvelet Transform (CVT) from Starck et al. [11],
and Discrete Wavelet Transform (DWT) for image fusion. The
default parameters for all the methods are shown in Table 1. The
source code for all the fusion methods will be made publicly avail-
able.

Results In Table 4-5, we quantitatively evaluate the TPR(%)@EER
of our proposed method, and compare it with tradition biometric
fusion methods and other baseline fusion methods for face and
palmprint verification tasks. For a fair comparison, we compare
all methods under the same evaluation protocols discussed above.

It is evident from Table 4-5 the comparison that BFWLS
shows promising results in comparison to other fusion methods on
CMU-HSFD and CASIA datasets using DSIFT + Cosine Similar-
ity method. Note that the TPR of BFWLS is better to RGB images
on both datasets. Figure. 5 shows the ROC curve for CMU-HSFD
and CASIA datasets.

Incase of DSIFT-FVs + Euclidean Distance method, we can
see that for CMU-HSFD our method performs the best, while
Raghu-DWT performs the best on CASIA. As previously men-
tioned for this method, we give a pre-defined number of GMM
clusters, hence the performance is influenced by the number of
clusters. Thus, DSIFT + Cosine Similarity is a better evaluation
criterion for feature quality assessment.



Table 4: Comparative performance on the CMU-HSFD [12] dataset.

Metric Fre-BF [7] Sch-WLS [1] RGB Raghu-DWT [3] Hao-CVT [13] BFWLS- BFWLS- Viv-WLS
(Mean) Avg (ours) Max (ours) (ours)
PSNR 36.04 19.78 - 47.79 14.00 38.47 34.37 39.36
MSE (10−5) 25 1123 - 1.86 4722 14.73 37.27 12.16
Time (Sec) 0.02 1.69 - 0.05 26.15 0.29 0.3 0.29
DSIFT-FVs + Euclidean Distance:
TPR(%)@EER 57.61 60.87 61.22 62.68 60.95 65.42 59.78 59.78
DSIFT + Cosine Similarity:
TPR(%)@EER 94.57 92.03 94.2 94.2 93.48 94.2 94.57 94.2

Table 5: Comparative performance on the CASIA [13] dataset.

Metric Fre-BF [7] Sch-WLS [1] RGB Raghu-DWT [3] Hao-CVT [13] BFWLS- BFWLS- Viv-WLS
(Mean) Avg (ours) Max (ours) (ours)
PSNR 46.55 37.41 - 57.55 26.29 48.49 43.94 43.94
MSE (10−5) 2.36 19 - 0.18 348 1.73 4.19 4.24
Time (Sec) 0.02 0.63 - 0.05 25.35 0.13 0.13 0.1
DSIFT-FVs + Euclidean Distance:
TPR(%)@EER 69.62 66.61 66.15 76.01 67.19 67.6 70.31 71.86
DSIFT + Cosine Similarity:
TPR(%)@EER 83.33 83.8 82.6 82.69 84.31 83.8 84.38 83.59
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Figure 5: The ROC curves for the CMU-HSFD and CASIA datasets using DSIFT + Cosine Similarity method for verification tasks. *
denotes the EER when the false accept rate is equal to the false reject rate. Best viewed in color.

CONCLUSION
In this paper, we present a method to combine visible and

near-infrared images using edge-preserving filters: bilateral fil-
ter and weighted least square filter. Our method successfully en-
hances the visible images using near-infrared information, to at-
tain a result image richer in information for computer vision ap-
plications. To illustrate the effectiveness of the proposed method,
experiments are performed to evaluate the image feature quality
on RGB-NIR Scene dataset. Our proposed fusion method is also
tested on two challenging biometric face and palmprint verifica-
tion tasks. The proposed method not only improves the image
feature quality for recognition tasks, but also the resulting fused
image has more detail information and high image contrast that
makes visually these images appear very pleasant.
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