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Abstract—In this paper we present an approach for low-level
body part segmentation based on RGB-D data. The RGB-D
sensor is thereby placed at the ceiling and observes a shared
workspace for human-robot collaboration in the industrial do-
main. The pixelwise information about certain body parts of the
human worker is used by a cognitive system for the optimization
of interaction and collaboration processes. In this context, for
rational decision making and planning, the pixelwise predictions
must be reliable despite the high variability of the appearance
of the human worker. In our approach we treat the problem as
a pixelwise classification task, where we train a random decision
forest classifier on the information contained in depth frames
produced by a synthetic representation of the human body and
the ceiling sensor, in a virtual environment. As shown in similar
approaches, the samples used for training need to cover a broad
spectrum of the geometrical characteristics of the human, and
possible transformations of the body in the scene. In order to
reduce the number of training samples and the complexity of the
classifier training, we therefore apply an elaborated and coupled
strategy for randomized training data sampling and feature ex-
traction. This allows us to reduce the training set size and training
time, by decreasing the dimensionality of the sampling parameter
space. In order to keep the creation of synthetic training samples
and real-world ground truth data simple, we use a highly reduced
virtual representation of the human body, in combination with
KINECT skeleton tracking data from a calibrated multi-sensor
setup. The optimized training and simplified sample creation
allows us to deploy standard hardware for the realization of
the presented approach, while yielding a reliable segmentation in
real-time, and high performance scores in the evaluation.

I. INTRODUCTION

The application of the here proposed approach for pixel-
wise segmentation of human body parts in RGB-D sensor data
is intended in research scenarios related to safe human-robot
cooperation (SHRC) and interaction (SHRI) in the industrial
domain. In our experimental environment we allow for a shared
workspace with no spatial and temporal separation between
human worker and industrial-grade components and robots. In
the context of SHRC and SHRI, we focus on the intuitive
and natural human-robot interaction, safety considerations and
measures in a shared work environment, the realization of
cooperative processes and the workflow optimization.

All elements of our research spectrum thereby rely on
information related to activities in the workspace. As a basis
for the information generation on different levels of abstrac-
tion, we use a multi-sensor setup which delivers RGB-D data

in a high frequency. This sensor data is then further pro-
cessed by low-level image processing approaches for optical
flow estimation or pixel-wise object class segmentation, by
mid-level approaches for object class detection and human
body posture recognition and by high-level approaches for
action recognition and situation awareness. The results from
the different approaches are thereby interchanged, and the
hierarchical scene analysis represents the core of a modular
cognitive system for safe human-robot collaboration.

In the here presented approach we directly process the
depth measurements of a RGB-D sensor which is placed on
the ceiling in the center of the shared workspace, in order
to provide detailed and spatially resolved information about
distinct body parts in the scene in real-time. This information
then serves the scene analysis modules for inference and
planing on higher abstraction levels.

The remainder of this paper is organized as follows. In
Section II, related work concerning object class segmentation
is presented. In Section III we describe our approach in detail.
In Section IV, the performance of our approach is evaluated
and discussed. Finally, in Section V, a conclusion is drawn
and hints for future work are given.

II. RELATED WORK

The segmentation of 2D Data from visual sensors is a
complex problem in low-level image processing and many
approaches have been proposed over the years. Applications
in domestic and industrial robotics, autonomous driving cars
and internet search optimization often build up on the semantic
analysis of RGB and depth images, where approaches in this
field in turn often rely on segmentation information about
object classes contained in the images. Most segmentation ap-
proaches thereby provide a labeling of each pixel, where a label
depicts the affiliation to a certain object or the background
class.

The application of Probabilistic Graphical Models (PGM),
especially Conditional Random Fields (CRF) for the labeling
problem is one of the major techniques for finding an optimal
image labeling or segmentation ([6], [12], [7], [9]). These
models allow for a convenient way to statistically model
interactions of distinct information sources for the optimization
process. In [6], He et al. used this property to incorporate
segmentation information on different pixel patch scales, with
a single pixel on the lowest scale. Here, several filters were



used to predict label information of the patches on different
scales. In [12], Yao et al. also use this property in order
to perform holistic scene understanding, where information
on different semantic abstraction levels is used for the joint
reasoning about the pixel labeling, the location of objects and
the scene type. Here, a TextonBoost approach ([9]) delivers
information on the pixel level. The main disadvantage of those
models is the complexity of the optimization process, which
in most cases is not tractable because of the high number of
pixel nodes in the graphical representation, and their modelled
interactions. In [7], Krähenbühl and Koltun present an efficient
inference technique, which allows for a fully connected CRF,
where the pixelwise interactions have to be modeled by a
linear combination of Gaussian kernels. The fully connected
CRF model applied to a standard object class segmentation
task showed promising results, while real-time conditions for
inference could be met.

In [9], Shotton et al. mention that most of the performance
of their segmentation approach is based on the information
of the pixelwise classification, and the modeled pairwise pixel
interactions in a 4-neighborhood only serve the regularization
or the so called filling in effect in the optimization process,
which mostly results in smoother and prettier results. It is
therefore, that many researchers abandon the CRF modeling
and focus on the pixelwise classification, without considering
the label context. In [9], Shotton et al. use a boosted classifier
for this task.

Lepetit and Fua ([8]) where one of the first who used
a Random Decision Forest (RDF) classifier for a low-level
classification task in image processing. In their publication
they showed how object recognition based on local features
can be efficiently done by shifting most of the computation
time for keypoint recognition into the training of a classifier.
In this context they demonstrated the high performance and the
low training complexity of RDFs, because of the randomness
in the classifier training. Also they used synthetic data for
the classifier training, which was generated by applying affine
transformations to real image representations of the objects.

Since then, many pixelwise object class segmentation ap-
proaches were developed based on RDFs, with different pixel
feature descriptions and weak learner types ([11], [3], [4], [5]).
In [11], Stückler et al. use a combination of depth and RGB
patches centered at pixels as feature descriptions for training
and prediction. For the decisions in the nodes of the trees
they apply simple difference tests on the normalized sums of
random feature sub-spaces. In [3], Dumont et al. use RGB
patches centered at pixel, as feature description for training and
prediction. In their approach, the weak learner type simply uses
threshold tests of random dimensions of the feature space. For
the training of the RDF, a maximum randomization concept is
applied. Also, in parts of their approach, the label context of
the whole pixel patch is considered in the training procedure.
Kontschieder et al. ([4]) present in their work the use of the
label context for training and prediction, for the segmentation
of 2D RGB images. The use of the label context in the
prediction step, showed more coherent segmentation results,
comparable to labeling results from CRF based approaches
with simple 4-neighborhood pairwise potentials. In [5], Shot-
ton et al. demonstrate the application of human body part
segmentation as a basis for human pose recognition. In their
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Fig. 1. Schematic layout of a generic classification system. Design decisions
determine the training and testing data generation, define the feature space
and the corresponding feature extraction, and select the classifier type. Based
on these decisions, classifier training and evaluation is conducted. Depending
on the evaluation results, the design might be adapted for performance
optimization.

approach, pixel centered patches in the depth data from a RGB-
D sensor are used for feature descriptions in training and pre-
diction. All training data was thereby synthetically generated
by applying motion caption data to detailed and articulated 3D
human body models in a virtual environment. Finally, in [1],
a comprehensive survey of RDF based applications in image
processing is given, with examples for image segmentation.

III. CLASSIFICATION SYSTEM FOR PIXELWISE
SEGMENTATION

In our approach, we want to perform segmentation of
aligned RGB and depth data from a RGB-D ceiling sensor,
where each pixel is labeled corresponding to its object class
affiliation. For this, we transform the problem into a standard
classification task, which allows for the use of a generic system
modeling framework (Fig.1). Because of our basic design
decisions of the system components, our approach can be
compared to the work from [5]. Our object classes are the
distinct human body parts: Head, Upper Body, Upper and
Lower Arm, Hand, Legs and the background rejection. For the
generation of data for the classifier training, we use a synthetic
representation of the human body in a virtual environment,
where synthetic sensors generate depth data. The features used
for the description of the object class samples are based on
the depth information only, and are extracted by a centered
pixel patch with constant size. Also, we aim for real-time label
predictions on images with a resolution of 640 × 480 pixels.
In our approach, for the realization of a reliable and robust
segmentation in real-time, we strive for simplicity of the data
generation and a time efficient classifier training. This allows
for the use of standard hardware components and very short
training periods, which renders the realization of our approach
simple and feasible. In the following sections we will describe
the components of our approach in detail.

A. Data Collection

For the training and evaluation of the classifier, we must
generate a large number of pixelwise body part class samples
with a known labeling. In case of the training we use solely
synthetic depth data, and in case of the testing data for the
evaluation step, we use synthetic and real-world depth data.
In Section IV we show that synthetic data is sufficient for the
generalization of the classifier in regard to real-world data.



Fig. 2. Left: Results from the KINECT skeleton tracking. Center: Coarse
approximation of the human body, modeled by a small set of spheres arranged
along the skeleton estimate. Right: Finer sphere approximation of the human
body, modeled by a larger set of spheres in the V-REP environment. Notice
the synthetic KINECT sensor representation above the human body model.

1) Synthetic Data Generation: The high variability of the
appearance of the human body demands for a high number
of training samples. In our case the variations concern the
body proportions, the body posture, and the translation and
orientation of the body relative to the sensor. The appearance
variations related to clothing or skin and hair color can be
omitted because of the exclusive use of depth data. In our
approach, we randomly pose a synthetic representation of the
human body in the field of vision of a static synthetic KINECT
sensor in a virtual environment. To address the problem of
high variation in the first two categories, body proportion
and posture, we use a broad spectrum of motion capture data
based on the KINECT human body posture tracking (Fig. 2
left). Here, persons with differing body proportions perform
distinct choreographies with the arms and upper body, facing
a real-world KINECT sensor. The result of this procedure is
an ordered set of skeleton tracking data:

Dskel = {T1, T2, . . .} ,

Tp = {C1, C2, . . .} ,

Cc = {S1, S2, . . .} ,

St = {a1,a2, . . .} , (1)

where Tp stands for the entire tracking data of person p,
which in turn consists of the different choreographies Cc of
types c. A choreography is defined by the estimated skeleton
setups St at time steps t, where each setup consists of the joint
positions ai. Based on this tracking data, many examples of
body proportions and postures can be injected into the training
data generation process.

For the synthetic ground truth data generation, we use
the virtual robot experimentation platform V-REP (see [2]).
This framework allows for a remote access on parts of its
functionality via a C/C++ API, and synthetic KINECT sensors
are already included. Also, the full version of the software
is free for educational and academic use. Here, we create a
human body approximation based on a set of spheres (Fig.2
center, right) for the synthetic representation of the human
body in the virtual scene. The spheres are colored according
to their object class or respectively body part affiliation (Fig.2
right), and positioned distinctively along the various bones

Fig. 3. Left: Synthetic depth data generated with a synthetic KINECT sensor
and a parameterized human body representation in the field of vision of the
sensor. Center: Synthetic depth frame with additive white Gaussian noise.
Right: Overlay of the object class or respectively body part coloring and the
synthetic depth data.

and joints of the current skeleton setup. To address the third
variation component, the body transformation, we statically
position a synthetic KINECT sensor in the virtual scene,
corresponding to the position of the real-world sensor, and
transform the body representation in its’ current setup in 3
dimensions in the floor plane:

Tfloor = To (∆x,∆y, α) ,

ãi = Tfloor ·
(
aix ,aiy ,aiz , 1

)T
, (2)

where the operator To generates a transformation matrix
from the 2d translation (∆x,∆y) in the floor plane, and the
rotation α around the floor normal in (∆x,∆y). All skeleton
joints ai are then transformed accordingly.

To create a basis for the generation of synthetic training
data, we now sample in each step uniformly vectors λ =
(p, c, t,∆x,∆y, α) from the parameter space, and set up the
human body representation in the scene accordingly. Using the
functionality of the V-REP framework, we can then retrieve
synthetic depth frames from the virtual KINECT sensor in
the scene (Fig.3 left). Because of the noise in the real-world
data, and to cope with unseen data samples in the testing step
more robustly, meaning to further the generalization ability of
the trained classifier, we add additive Gaussian white noise to
the depth values (Fig.3 center). For supervised training and
evaluation of the classifier, we also need to know the actual
labeling of the samples. To get this information we overlay
the RGB and the depth channels of the synthetic sensor,
where the distinct object class coloring of the representation
automatically assigns the labels to the depth data (Fig.3 right).
The result of this procedure is the basis for the pixelwise
extraction of synthetic ground truth data, based on human body
appearances with high variation in all three categories.

2) Real-world Data Generation: For the evaluation of the
classifier, we also want to use real-world data, which means
that we also need labeled depth frames of human bodies in the
field of vision of the real-world ceiling sensor. One approach
would be, to let different people perform distinct choreogra-
phies under the sensor, and annotate the recorded depth frames
by hand. But this would be a very time consuming and tedious
task. Instead, we deploy an automatic annotation approach,
where the labeling is inferred from the single spheres of the
human body sphere representation in the point cloud.

In our experimental environment we use a multi KINECT
sensor setup for scene analysis. All sensors are thereby



Fig. 4. Left: Depth frame from the real-world ceiling sensor, with a person
standing in its’ field of vision. Right: Inferred labeling of the depth data, based
on point cloud distance heuristics and the sphere representation of the human
body.

calibrated and the mutual transformations are known. It is
therefore directly possible to record tracking data from a
sensor observing the scene from the side, and depth data from
the ceiling sensor (Fig.4 left) concurrently, where all data is
in one temporal and spatial context. Because of the known
transformations, we can transform the skeletal tracking data
into the coordinate system of the ceiling sensor. Based on
the parameterized sphere representation (Fig.2 center) and the
given assignment of the spheres to distinct body part classes,
we can use distance heuristics to infer the labeling of all depth
values in the frame. One automated labeling result is shown
in the right image in Figure 4. Although the quality of this
example is very high, not all predictions exhibit the same
quality. It is therefore necessary, to discard predictions of low
quality in a subsequent step by hand, which can be done very
quickly. The result of this two step procedure is the basis for
the pixelwise extraction of real-world ground truth data.

B. Definition of Features

Based on the data, created as described in the Sections
III-A1 and III-A2, we generate our training and test samples.
For this we must define the features which are used for the
description and classification of the samples. In our approach,
we use a rectangular region, centered at the pixel sample
position (Fig.5 left), for the extraction of depth values around
the sample. The ordered depth values are then used as the
feature description f of the object class sample s:

f(s) =
(
f[1:wp],1, f[1:wp],2, . . . , f[1:wp],hp

)
∈ Rwp·hp ,

fi,j = do (sx + (i− wp/2), sy + (j − hp/2)) ,

(i, j) ∈ {1, . . . , wp} × {1, . . . , hp}, (3)

where (sx, sy) is the position of sample s in the depth
frame and do(i, j) depicts the operator which returns the depth
value at position (i, j) in the depth frame. The values wp and
hp are the static width and height of the feature region.

In the training step, the classifier therefore learns to dis-
criminate body part classes based on the spatial and geometri-
cal local layout of the samples. The size of the layout region is
fixed for all samples, and the region is in accordance to Eq.3
parallel to the coordinate system of the image sensor. Elements
of the feature region which are outside the image boundaries
are treated as background, which in our case is represented by
the depth values of the workspace floor.

Fig. 5. Feature extraction of a hand pixel sample using a rectangular region.
Left: The rectangular region is parallel to the image coordinate system and
centered at the sample position. Right: The rectangular region is centered at
the sample and rotated according to the adaptation approach in Section III-C.

Based on the definition of the features and the extraction
method, we then generate the training and evaluation data
by uniformly selecting annotated depth frames (Sec.III-A1,
III-A2) and extracting the features and the label of random
body part class samples. The number of randomly chosen
frames and samples per class are thereby design parameters
for the classifier training and evaluation.

C. Optimized Training Strategy

In our approach, in order to reduce the complexity of
the classifier training, we optimized parts of the described
processes in Section III-A and III-B. The optimizations thereby
only concern the generation of training data, and are indepen-
dent of the specific classifier.

First, instead of using different persons with varying body
proportions for the skeletal choreography recording, we only
use one person with average proportions. To inject variation in
regard to the body proportion into the synthetic depth frame
generation, we apply simple scaling of the recorded skeleton
setups:

Sscaled = λ · Sorig = {λ · a1, λ · a2, . . .} . (4)

At creation time, instead of uniformly sampling the person
parameter p, we sample scaling factors λ from a fixed interval
[λmin, λmax]. This measure simplifies the generation of train-
ing data with high variation in body proportions, but it does
not reduce the required amount of training samples for a high
classifier performance.

Fig. 6. Feature patch adaptation. Left: A patch layout centered at an object
point with adapted orientation according to the object point and center position,
which is invariant if the object moves on a circular path around the center
point. Right: Changing distance causes slow changes in the adapted path
layout.



In order to reduce the number of required training samples,
we apply an elaborated and coupled strategy which is based
on the following assumptions. Imagine a sensor placed on the
ceiling with the image sensor parallel to the floor, and an object
is moving on a circular path around the image center projection
point on the floor, while always facing the floor normal in the
center point with the same object surface (Fig.6 left). Then,
a pixel patch at a fixed object point, adapted to the object
position as depicted in Fig.6, would always have the same
layout, independent of the exact position of the object on this
path. If the radius of this circular path is changed, the layout
of the patch also changes because of the position of the sensor
(Fig.6 right). The rate of change as a function of the distance
is however very low, if sensor and object point height are no
too far apart.

Based on these assumptions, we adapt the synthetic depth
frame generation process and the feature extraction. Instead
of uniformly sampling 2D translations (∆x,∆y), we sample
distances d from a small set D = {d1, d2, . . . , dN}, where N
can be very small because of the assumed low rate of change.
The translation parameters are then calculated as:

(∆x,∆y) = (cx + d, cy + d) , (5)

where (cx, cy) is the projection of the image center on the
floor. The result is that during data creation, various skele-
ton setups are presented to the synthetic sensor in different
orientations and on different positions along a straight line.
This means, that one dimension of the sample parameter space
could be removed. In addition, the variation of d is very small,
because of the small set options D. Altogether, these measures
reduce the number of required training samples for an adapted
feature extraction, because of the elimination of redundancy.

To actually use the reduced synthetic data for training, we
also have to adapt the feature extraction as illustrated in Fig.6
and Fig.5 right. Accordingly Eq.3 is changed to:

f̃(s) =
(
f̃[1:wp],1, f̃[1:wp],2, . . . , f̃[1:wp],hp

)
∈ Rwp·hp ,

f̃i,j = do(t(i, j)) , (i, j) ∈ {1, . . . , wp} × {1, . . . , hp},

t(i, j) = (b0,b1) ·
(
i− wp/2
j − hp/2

)
+

(
sx
sy

)
, (6)

where the function t transforms the patch position (i, j)
into a global frame position, using the basis vectors b0 and b1

of the rotated region coordinate system. The first basis vector
b0 is thereby defined by the displacement of the pixel sample
s relative to the depth frame center (wf/2, hf/2). The second
basis vector b1 is defined by the orthogonality constraint.

Both, the reduced synthetic depth frame generation and the
adapted feature extraction can now be used for an optimized
classifier training, where the classification performance can be
preserved, while simultaneously reducing the number of train-
ing samples. It should be mentioned, that the adapted feature
extraction is also used for testing and the label predictions.

D. Classifier Selection

The choice of the actual classifier is independent of the
descriptions in the preceding sections, because of the generic

structure of the whole classifier system. In our approach for
pixelwise object class labeling, we use Random Decision
Forests for the classification task. RDFs have many advantages
over other classification methods. These are mainly the ability
to perform multi-class classification without any extensions,
the fast training and the high generalization ability because of
the randomization in the training step, the easy implementa-
tion because of the simple structure, the direct possibility of
parallelization, the fact that the predictions can be understood
as empirical distributions conditioned on the test sample and
finally the high classification performance. We will give a very
short overview over the principle of RDF training and testing,
in order to motivate the different parameters and to describe the
weak learner type, which is the basis for the trained decisions
in the nodes of the trees. A comprehensive description of RDFs
and applications can be found in [1].

A binary Decision Forest F consists of an ensemble of nt
binary Decision Trees T = {ti}. A tree ti has corresponding
to its’ name a directed binary tree as a graph representation,
with two types of nodes: split nodes which exhibit two child
nodes and leaf nodes with no child nodes. Split node represent
decisions based on distinct trained feature functions, which
are of the same type for all split nodes and trees. Leaf nodes
represent the class prediction of a tree. In order to predict
a class label of sample s, the sample is routed through the
tree according to the decisions of the node feature functions,
which process the samples’ feature vector f(s). The leaf node,
the sample ends up in, then delivers the prediction for the class
label.

When training a tree, a set of training samples with known
labels are passed down the tree. In each node the training
procedure tries to find the optimal feature function, where
optimality considerations are based on quality measures like
the entropy. Here, the difference between the entropy of the
class label set of the samples at the current node and the mean
entropy of the label sets in the child nodes after applying the
binary decision to the node samples, serves the evaluation of a
certain feature function. If the maximum difference is smaller
than a certain threshold, or the maximum tree depth dtmax

is reached, then the split node becomes a leaf node, and the
relative frequency of the different class labels of the training
samples assigned to this node are used for the estimation of
the empirical class distribution, which in turn is used for the
class label prediction.

Training of a forest is done by training the single trees
on all training samples, and for testing the empirical class
distributions of all trees are used for a forest prediction. For
instance the maximum mean class probability can be used as
the forest prediction for a test sample.

Random Decision Forests are Decision Forests where ran-
domness is injected into the training process, in order to speed
up the training and to further the generalization ability and
robustness of the classifier. This can be done by randomly
choosing subsets of the training samples for the single tree
training (bagging), or by randomly choosing fixed sized subsets
of feature space dimensions for the decisions in the slit nodes.
In our approach we use both techniques. For the bagging
we apply training data sampling with replacement, and for
the decisions based on a random feature subspace we use a
linear discrimination of 2D subspaces with thresholding of the
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Fig. 7. Comparison of the standard and optimized training strategy, using
the average Recall measure (vertical axis) as a function of the number of
synthetic depth frames used for training (horizontal axis). For the evaluation,
250 annotated real-world depth frames were used.

distance to the linear discrimination border:

(fd1 , fd2)(b1, b2)T ≥ δ . (7)

Therefore, our feature functions are parameterized by the
choice of the two feature dimensions {d1, d2}, the orientation
(b1, b2) of the linear discrimination and the distance threshold
δ. For the training we can control the randomness by con-
straining the number of randomly sampled feature function
parameters for the optimization in each node.

IV. EVALUATION

For the evaluation of the overall segmentation approach and
the optimized training, we use a fixed parameter setup with
forest size nt = 5, feature patch size (wp, hp) = (64, 64) and
maximum tree depth dtmax

= 15. For the randomization in the
training process we use 100 threshold and 100 feature function
samples in the node optimizations, and bagging with replace-
ment for the tree-wise training data sampling. All training is
based on synthetic depth frames with additive white Gaussian
noise using a standard deviation of 15 cm. For the performance
evaluation we use the Recall and Precision measure for single
object classes and the average as the combined measure for
all classes ([10]).

The numbers presented in Table I - III, and the prediction
results illustrated in Fig.8 are based on the same trained
decision forest. Here, a total of 5000 synthetic depth frames,
generated as described in III-C, were used as a basis for the
optimized RDF classifier training. For the training process of
each tree, 2000 frames from this data were chosen randomly,
and for each frame, 300 pixel positions per object class were
chosen uniformly for the extraction of the features patches and
ground truth labels. Altogether, this resulted in approximately
2.6 × 106 synthetic labeled training samples per tree, with a

TABLE I. CONFUSION MATRIX USING SYNTHETIC DATA

Bg He UB UA LA Ha L

Bg (Background) 0.95 0.00 0.00 0.00 0.00 0.00 0.05

He (Head) 0.00 0.93 0.05 0.01 0.01 0.00 0.00

UB (Upper Body) 0.00 0.03 0.87 0.08 0.00 0.00 0.02

UA (Upper Arm) 0.00 0.00 0.16 0.80 0.04 0.00 0.00

LA (Lower Arm) 0.00 0.00 0.02 0.14 0.78 0.06 0.00

Ha (Hand) 0.00 0.00 0.00 0.02 0.23 0.75 0.00

L (Legs) 0.00 0.00 0.04 0.00 0.01 0.00 0.95

TABLE II. CONFUSION MATRIX USING REAL-WORLD DATA

Bg He UB UA LA Ha L

Bg 0.95 0.00 0.00 0.00 0.00 0.00 0.05

He 0.00 0.84 0.08 0.02 0.05 0.01 0.00

UB 0.00 0.00 0.83 0.15 0.02 0.00 0.00

UA 0.00 0.00 0.19 0.67 0.13 0.01 0.00

LA 0.00 0.00 0.00 0.05 0.77 0.18 0.00

Ha 0.00 0.00 0.00 0.04 0.15 0.81 0.00

L 0.03 0.00 0.04 0.02 0.01 0.03 0.87

training time for the whole forest of approximately 40 min
using a PC with Intel i7 CPU and 4 GByte RAM. Calculating
the pixelwise predictions for a frame with 640 × 480 pixels,
using the trained forest, takes about 40 ms on this hardware.

When applied to synthetic and real-world testing data,
the trained RDF produced similar quantitative and qualitative
results for both data types, as presented in Table I - III and
Fig.8 respectively. Overall, the testing of the synthetic data
shows better results compared to the real-world data, yet the
quantitative measures are not far apart and demonstrate a
good overall performance for both types. This indicates, that
the training concept based on synthetic data only, using a
coarse approximation of the human body in limited postures
and transformations is sufficient for the reliable and high-
performance segmentation of real-world data, in our applica-
tion scenario.

In order to demonstrate the usefulness of our optimized
training strategy, we evaluated trained forests on 250 annotated
real-world depth frames, using the standard and optimized
strategy, and a varying number of synthetic samples for train-
ing. The results depicted in Fig.7 thereby show a steeper ascent
and higher average Recall values for our optimized strategy.
When compared, the quality measures of both meet at 1000
and 250 training samples for the standard and the optimized
strategy respectively. This indicates the ability to learn the
highly varying appearance of object classes based on a reduced
number of training samples in case of the optimized training.

V. CONCLUSION

In this paper we described a generic classification approach
for the pixelwise labeling of object classes, applied to the
problem of human body part segmentation in RGB-D data
from a ceiling sensor. As an innovation we presented an
optimized training strategy which allows for a reduced number
of training samples while preserving the classification perfor-
mance. Also, for the classifier training, we demonstrated the
applicability of simple synthetic human body representations
in a virtual environment, the use of the KINECT skeleton
estimations as a substitute for motion capturing data and the
elaborated combination of both for the automated ground truth

TABLE III. CONFUSION MATRIX BASED QUALITY MEASURES

Avg Bg He UB UA LA Ha L

Recall Synth 0.86 0.95 0.93 0.86 0.79 0.77 0.75 0.94

Precision Synth 0.71 1.00 0.97 0.79 0.77 0.72 0.63 0.11

Recall Real 0.82 0.94 0.84 0.83 0.67 0.76 0.80 0.87

Precision Real 0.61 1.00 0.99 0.70 0.65 0.48 0.46 0.03



Fig. 8. Prediction results based on synthetic and real-world data. The first column shows the feature frames based on depth data, the second column shows
the ground truth labeling, the third and fourth column show the prediction results with prediction probability thresholding of 0.5 and 0.75 respectively. Class
predictions with a probability less than the thresholds are colored black in the result images. The first line is based on synthetic testing data, the second to fourth
lines are based on real-world testing data.

labeling of real-world data. The quantitative and qualitative
results presented in the evaluation thereby emphasize the
high performance of the overall system and the suitability of
synthetic training data for the segmentation of real-world data.
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